

Detailed Profile of Anil K. Rajvanshi

Anil K. Rajvanshi is a distinguished Indian academic, mechanical engineer, and a pioneering figure in rural development. Born and raised in Lucknow, India, he has dedicated over <u>four decades to applying scientific and technological solutions to grassroots problems</u>.¹ Since 1981, he has served as the Director of the Nimbkar Agricultural Research Institute (NARI) in Phaltan,

Maharashtra, India.¹ His extensive work primarily focuses on renewable energy, sustainable development, and improving the quality of life in rural communities through practical innovations.²

Rajvanshi's notable contributions include the development of efficient ethanol-based cooking and lighting systems, electric cycle rickshaws, advanced biomass gasifiers, and solar-powered clean drinking water technologies.³ Beyond technological innovation, he is recognized for his significant influence on national policy, notably as the principal author of the "Energy Self-Sufficient Talukas" initiative.³ His contributions have earned him numerous prestigious accolades, including the Padma Shri (2022), induction into the U.S. Solar Hall of Fame (1998), and the Jamnalal Bajaj Award (2001).² A unique aspect of his work is his integrated philosophy, which advocates for the synthesis of spirituality and high technology as a pathway to holistic societal development and happiness, leading some to describe him as a "spiritual engineer".⁵

Early Life and Education

Anil K. Rajvanshi <u>was born and raised in Lucknow, India.</u> He completed his Indian School Certificate from St. Francis' College, Lucknow, in 1966. He pursued higher education at the Indian Institute of Technology (IIT) Kanpur, where he earned his Bachelor's degree in Mechanical Engineering in 1972 and his Master's degree in the same field in 1974.

Subsequently, he moved to the United States to undertake doctoral studies, receiving his Ph.D. in Mechanical Engineering from the University of Florida, Gainesville, USA, in 1979.² His doctoral advisor was Dr. Erich Farber, a renowned solar energy pioneer.⁴ The combination of his Indian upbringing and foundational engineering education from IIT Kanpur, coupled with advanced studies in the US under a leading solar energy expert, provided him with a unique blend of local contextual understanding and cutting-edge global technical expertise. This educational trajectory equipped him with both an intimate knowledge of India's rural challenges and the high-level scientific and engineering skills necessary to

develop appropriate, globally relevant, and impactful solutions. His academic background positioned him to bridge the gap between advanced scientific knowledge and its practical application in a developing country context, ensuring his later work was deeply rooted in both technical excellence and a nuanced understanding of real-world needs.

Career and Leadership at Nimbkar Agricultural Research Institute (NARI)

Following his doctoral studies, Dr. Rajvanshi served on the faculty of the Department of Mechanical Engineering at the University of Florida for approximately two-and-a-half years.¹ In 1981, driven by a strong sense of idealism and a profound desire to contribute to his homeland, he made the significant decision to return to India.¹⁰ He took on the role of Director of the Nimbkar Agricultural Research Institute (NARI) in Phaltan, Maharashtra, a rural non-governmental organization.¹ His wife, Nandini Nimbkar, also returned to India and is involved with NARI, establishing a shared commitment to their mission.²

Dr. Rajvanshi's choice to leave a faculty position in the United States and return to rural India, despite the then-limited facilities in Phaltan, highlights a profound and enduring commitment to social impact over personal gain. At the time of his return, Phaltan was described as an "overgrown village with very few facilities," sometimes requiring him to travel to Pune for long-distance calls. This personal sacrifice is a key driver of his "Romance of Innovation" philosophy, which posits that meaningful research and development can be achieved even with limited resources. His own reflections indicate that living in rural India taught him humility and sustainability, deepening his spiritual inclinations and intertwining his personal journey with his professional purpose. This personal narrative of self-sacrifice and transformation underscores the authenticity and deep conviction behind his work, providing crucial context for understanding his dedication to developing practical, low-cost, high-impact solutions for the rural poor.

Under his leadership for over 40 years, NARI has become a prominent institution dedicated to applying sophisticated science and technology to solve pressing problems in rural areas, focusing on energy, water, pollution, and income generation, primarily through environmentally sound renewable energy solutions.² NARI, under his direction, has undertaken pioneering research and development across diverse fields including agriculture, renewable energy, animal husbandry, and sustainable development.⁴

Pioneering Research and Innovations for Rural Development

Dr. Rajvanshi is credited with 7 patents across various domains, including lanterns, alcohol stoves, biomass gasifiers, and electric cycle rickshaws, reflecting his diverse technological contributions.² He has successfully led 28 projects as a principal investigator, securing grants totaling approximately Rs. 40 million from various national and international agencies.³

Renewable Energy Technologies (Ethanol Fuels, Biomass Gasification, mobility solutions, etc.)

Ethanol Production and Application: Dr. Rajvanshi pioneered ethanol production from sweet sorghum in India in the early 1980s, recognizing its potential as a sustainable energy crop that also provides food and fodder. Under his leadership, NARI established what became the world's largest program on sweet sorghum ethanol production in the early 1990s. This led to NARI's membership in the EEU consortium in 1994 and influenced the initiation of national programs on sweet sorghum in India. He developed comprehensive technology for the fermentation of sweet sorghum juice and its solar distillation to produce ethanol. His work on ethanol-based lanterns and stoves has had a significant global impact, playing a major role in initiating alcohol cooking and lighting programs, with approximately half a million stoves distributed in Africa and Southeast Asia.

Ethanol Stove and Lantern: NARI developed an efficient cooking stove designed to operate on a low alcohol concentration, specifically a 50% (w/w) ethanol-water mixture. This design choice is a crucial strategic decision that directly addresses the realities of rural economies. High-concentration ethanol requires more sophisticated and costly distillation processes, typically found in industrial settings. By designing for a low concentration, Rajvanshi made the entire fuel production and supply chain decentralized and achievable at the village level using basic, affordable technology. This reduces dependence on external markets and complex logistics, empowering local communities to produce their own clean cooking and lighting fuel. This approach exemplifies his philosophy of "More from Less for More (MLM)" This approach exemplifies his philosophy of both technical feasibility and socio-economic ground realities, and linking technological innovation to broader goals of rural self-sufficiency, economic empowerment, and improved health outcomes.

The ethanol stove functions similarly to an LPG stove with adjustable flame settings, offering clean combustion with no smoke or unpleasant smell, and carbon monoxide emissions well within acceptable ranges, providing a healthier alternative to traditional cooking fuels.¹⁴ Field trials demonstrated high user

satisfaction among rural women due to its ease of lighting, cleanliness, and safety.¹⁹ The "Noorie" multifuel lantern (US Patent US6688877B1, filed 2003-03-17) produces light equivalent to a 100W light bulb (1250-1300 lumens).¹⁵ It is highly efficient, consuming 60% less kerosene and operating at one-third the pressure of existing lanterns. It is versatile, capable of running on kerosene, ethanol (minimum 80% v/v), or diesel.¹⁴ Rajvanshi has actively advocated for government policy changes, such as the removal of excise duty on ethanol, to make this locally produced, low-concentration fuel more affordable (estimated cost Rs 10-14/liter) and widely accessible for rural households.¹⁴

Biomass Gasification: Dr. Rajvanshi's group pioneered the development of loose biomass gasification systems, transforming agricultural residues into valuable energy. In 1995, NARI achieved a significant "world-first" by developing a 500 kW (thermal) sugarcane leaves gasifier, a culmination of research that began in 1987, with funding from the Rockefeller Foundation. This achievement is not just a technical success; it is a methodological and philosophical statement. It demonstrates that ingenuity, deep understanding of local problems, and dedicated teamwork can overcome significant resource limitations, validating the idea that impactful innovation can be decentralized and community-driven, rather than solely dependent on large capital investments or urban research hubs. This highlights a core element of Rajvanshi's legacy: proving that globally significant and highly impactful research and development is achievable outside traditional, well-resourced academic or industrial environments.

This system efficiently converts loose dry biomass materials, such as sugarcane leaves, bagasse, bajra stalks, and sweet sorghum stalks/bagasse, into high-quality producer gas (a mixture of carbon monoxide and hydrogen) for thermal applications and electricity generation via gensets.²¹ Tests demonstrated substantial diesel savings (70-93%) when the gasifier was used with a 15 kVA diesel generator set.²² A valuable byproduct of the gasification process is char (approximately 24% by weight of the original fuel), which can be briquetted into an excellent fuel for wood stoves or utilized as a soil conditioner.²²

Sustainable Mobility Solutions (Electric Cycle Rickshaws)

Dr. Rajvanshi's group at NARI pioneered the <u>development of electric cycle</u> <u>rickshaws in India in the late 1990s</u>, initiating a program that has since led to the widespread proliferation of these vehicles across the country.⁵ His design was patented in India in 1997 (Indian Patent Application Number 753/DEL/1997), incorporating features such as back wheel breaking, lightweight chassis and improved gearing system.²⁴ The improved pedal rickshaw was then converted into electric cycle rickshaw. The motivation behind this innovation was to alleviate the

physical hardship faced by traditional rickshaw pullers and to provide an environmentally friendly, energy-efficient, and cost-effective alternative to petrol-powered vehicles.²⁴

NARI's improved rickshaw design featured ample luggage space, five-speed gears, and a motor-assisted pedal system, powered by a 1 KW DC motor and lead-acid batteries, capable of traveling 60-70 km on a single charge.²⁴ Economic analysis showed the electric rickshaw to be significantly more energy-efficient (103 Whr/person-km) and cost-effective (6 paise/person-km) compared to petrol-powered three-wheelers.²⁷

The trajectory of the electric rickshaw from Rajvanshi's patented design to its later widespread commercialization by others illustrates a common pattern in disruptive innovation: pioneering research often precedes widespread market acceptance. Although his patented design was later improved upon and commercialized by others (e.g., the Mayuri e-rickshaw, which debuted in 2011, building on Rajvanshi's earlier work), his pioneering efforts laid the crucial technological foundation for India's e-rickshaw revolution.²⁴ He noted that while the copying of his design was a "monetary loss" for NARI, it also indicated that they were "ahead of time".²⁴ This means that his work was not just about creating a product but about proving a concept and demonstrating its viability and benefits (social, environmental, economic), paving the way for their eventual widespread adoption and influencing the broader policy and manufacturing landscape for sustainable urban transport in India.

Water Purification and Other Rural Technologies

Dr. Rajvanshi pioneered the development of low-cost, solar-based water purifiers, recognized as one of the "ten life-changing technologies to come out of India" by a US-based group.⁵ His Clean Drinking Water Technology (CDWT) system is a prime example, purifying rainwater using solar thermal technology and a unique fabric filtration method inspired by traditional saree cloth.⁶ This system provides 100-200 liters of safe drinking water daily to over 400 children in rural schools in villages like Nandal and Adarki.⁶ The CDWT system operates with minimal electricity and maintenance, effectively eliminating coliform bacteria and maintaining water temperatures above 45°C, even on cloudy days, ensuring consistent water safety.⁶

The solar-powered water purification system's dual impact on both health and STEM education exemplifies a deeply holistic approach to rural development that extends beyond immediate problem-solving.⁶ Beyond providing clean water, this initiative is designed to actively foster interest in STEM (Science, Technology,

Engineering, and Mathematics) education among rural children, with teachers utilizing instructional modules prepared in their native Marathi language. The physical system itself becomes a tangible, real-world laboratory for students, promoting well-being through both physical resources and intellectual enlightenment. This approach recognizes that sustainable development requires not just external aid or technology transfer but also internal capacity building and intellectual empowerment. Rajvanshi advocates for government subsidies, potentially through initiatives like the Jal Jeevan Mission, to further reduce the cost of purified water (from Rs 2.3/liter to Rs 1.3/liter over a 10-year lifespan), making it even more accessible.

His innovative concept of rural restaurants, first pioneered in 2012, is widely credited with inspiring significant government schemes such as "Amma Unavagam" (2013) in Tamil Nadu and "Shiv Bhojan" (2020) in Maharashtra, which have provided affordable and healthy food to hundreds of millions of poor people.

Policy Contributions and Thought Leadership

Dr. Rajvanshi is recognized as the principal author of the national policy on "Energy Self-Sufficient Talukas" (sub-districts) in 1996.³ This policy, managed by the Ministry of New and Renewable Energy (MNRE), served as a crucial precursor to India's National Biomass Power Plant Program and potentially inspired the larger PURA (Provision of Urban Amenities in Rural Areas) program.⁵ His active transition from a hands-on inventor and researcher to a policy author and advisor indicates a strategic understanding that technological solutions, however innovative, are insufficient for widespread and sustainable impact without supportive policy frameworks.³ His involvement in policy demonstrates a commitment to systemic change beyond individual projects. Without conducive policy, even the most effective grassroots innovations may struggle to scale or achieve broad societal benefit. His policy work likely aimed to create an enabling environment—through funding, regulatory support, and strategic direction—for the widespread adoption and implementation of the renewable energy and rural development technologies that he and NARI were pioneering.

His expertise has been sought at the highest levels of governance; he has served on numerous influential committees of the Government of India, including the Office of the Principal Scientific Advisor, the Planning Commission, the Advisory Board on Energy, and MNRE.³ He also advised the Government of Maharashtra on bodies like the State Planning Commission and the Maharashtra Electricity Regulatory Commission.³ His pioneering work and sustained advocacy have directly influenced significant government initiatives, such as the global promotion

of ethanol as a cooking fuel by international bodies like the World Bank and the UN's Cooking Stove Alliance. Furthermore, his concept of rural restaurants is credited with inspiring large-scale government food security schemes in India.⁵

Publications, Media Presence, and Philosophy

Dr. Rajvanshi has authored or co-authored more than 350 publications in various national and international journals, including 35 editorial articles on sustainable development and spirituality in major Indian newspapers and magazines.² He holds 7 patents.² His written works include seven books and several book chapters. Notable books include 1970s America - an Indian Student's Journey, Nature of Human Thought, Romance of Innovation - A human interest story of doing R&D in rural setting, A Life of an Ordinary Indian - An exercise in self-importance and Exploring the Mind of God.² He is a regular blogger for platforms such as Times of India (Speaking Tree), Huffington Post, Thrive Global, and South Asia Monitor, and is also a regular podcaster.²

A unique and profound aspect of his work is the explicit integration of spirituality and technology. He views "spirituality with high technology" as the "mantra of India's development" and a pathway to "happiness". This is not merely a personal interest but a guiding philosophy that shapes his research and lifestyle, positioning him as a "spiritual engineer". His writings on Patanjali Yoga Sutras, exploring deep science embedded in ancient Indian philosophical thought, exemplify this intellectual pursuit. This theme suggests a broader vision for development that transcends purely material or economic metrics, aiming for holistic societal wellbeing.

His life story, particularly his decision to return to India and dedicate his career to rural areas, serves as a powerful inspiration for Indian youth and Non-Resident Indians (NRIs).⁷ His frequent lectures at premier Indian institutions such as IITs, NITs and IIMs reinforce his role as a mentor and motivator for future generations to engage in nation-building through science and technology.⁷ He advocates for a "Jigyasa" (curiosity) and a questioning attitude to extract maximum value from educational institutes.³²

Dr. Rajvanshi loves to interact with young students and is a teacher at heart. He has eclectic reading as a hobby and loves to travel and cook.

Awards and Recognition

Dr. Anil K. Rajvanshi has received numerous national and international awards for his pioneering work:

- Padma Shri (2022): One of the highest civilian awards of India.²
- <u>Distinguished Alumnus Award, Indian Institute of Technology Kanpur</u> (2022):.²
- <u>Distinguished Alumnus Award, University of Florida (2014)</u>: He was the first Indian to receive this award.²
- Globe Award for Sustainability Research (2009): Awarded for NARI's invention of the ethanol lanstove (lantern and stove combination).²
- Energy Globe Award (2004): For his work on the electric cycle rickshaw.²
- Federation of Indian Chamber of Commerce and Industry (FICCI) award (2002):.2
- Jamnalal Bajaj Award (2001): For the application of science and technology for rural areas.²
- Solar Hall of Fame (1998): Induction into the U.S.-based Solar Hall of Fame.²

Conclusion

Anil K. Rajvanshi stands as a testament to the transformative power of applied science and technology, particularly when guided by a profound commitment to societal well-being. His career at Nimbkar Agricultural Research Institute (NARI) exemplifies how a deep understanding of local challenges, coupled with high-level technical expertise, can yield globally significant innovations. His pioneering work in renewable energy, sustainable mobility, and water purification has not only provided practical solutions to critical rural problems but has also laid foundational blueprints that have influenced national policies and inspired broader development initiatives.

The trajectory of his innovations, from patented designs to widespread indirect adoption, underscores his role as a visionary who often worked "ahead of time," proving the feasibility of concepts before their mass market readiness. Furthermore, his unique philosophy, integrating spirituality with technological advancement, offers a holistic model for development that prioritizes human happiness and sustainable living. Through his research, policy advocacy, and role as an inspirer for youth, Dr. Rajvanshi has forged an enduring legacy as a "spiritual engineer" who embodies the potential for science and technology together with spirituality to drive meaningful and equitable progress in rural India and beyond.

Works cited

1. en.wikipedia.org, accessed on May 29, 2025, https://en.wikipedia.org/wiki/Anil_K._Rajvanshi

- 2. Anil K. Rajvanshi Wikipedia, accessed on May 29, 2025, https://en.wikipedia.org/wiki/Anil K. Rajvanshi
- 3. Dr. Anil Rajvanshi, Director Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://nariphaltan.org/shortbio.pdf
- 4. Books by Anil K. Rajvanshi, accessed on May 29, 2025, https://nariphaltan.org/publications/akrbooks.htm
- 5. Dr. Anil K. Rajvanshi VVVS, accessed on May 29, 2025, https://vvvs.ruha.co.in/product-sub-type/20
- 6. With a Saree & Solar Power, He's Bringing Safe Drinking Water To 400+ Children In Rural Schools The Better India, accessed on May 29, 2025, https://thebetterindia.com/417624/dr-anil-rajvanshi-nari-maharashtra-rainwater-harvesting-drinking-water-to-children/
- 7. Citation for Anil K Rajvanshi Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://nariphaltan.org/shortbio.pdf
- 8. en.wikipedia.org, accessed on May 29, 2025, https://en.wikipedia.org/wiki/Anil K. Rajvanshi#:~:text=Recently%20he%20has %20been%20given,award%20of%20India%20Padma%20Shri.
- Anil K Rajvanshi Apple Podcasts, accessed on May 29, 2025, https://podcasts.apple.com/us/podcast/anil-k-rajvanshi/id1446531658
- 10. Anil K Rajvanshi Podbean, accessed on May 29, 2025, https://anilrajvanshi50.podbean.com/
- 11. Anil K. Rajvanshi (72/B.Tech/ME/IIT Kanpur) Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://www.nariphaltan.org/akrstory.pdf
- 12. Romance of Innovation A human interest story of doing R&D in rural setting., accessed on May 29, 2025, https://nariphaltan.org/roi.pdf
- 13. Nimbkar Agricultural Research Institute Wikipedia, accessed on May 29, 2025, https://en.wikipedia.org/wiki/Nimbkar Agricultural Research Institute
- 14. Go for ethanol Times of India, accessed on May 29, 2025, https://timesofindia.indiatimes.com/edit-page/go-for-ethanol/articleshow/1632285.cms
- 15. (PDF) Sweet sorghum R&D at the Nimbkar Agricultural Research Institute (NARI), accessed on May 29, 2025, https://www.researchgate.net/publication/2915226 Sweet sorghum RD at the Nimbkar Agricultural Research Institute NARI
- 16. WO2008053498A2 An improved stove operable on low alcohol concentration Google Patents, accessed on May 29, 2025, https://patents.google.com/patent/WO2008053498A2/en
- 17. Low-concentration ethanol stove for rural areas in India Journey to Forever, accessed on May 29, 2025,
 - https://journeytoforever.org/biofuel library/ethstove.pdf
- 18. (PDF) Low-concentration ethanol stove for rural areas in India ResearchGate, accessed on May 29, 2025, https://www.researchgate.net/publication/257434263 Low-concentration ethanol stove for rural areas in India
- 19. A woman cooks on an ethanol stove, which was designed by Anil K. Rajvanshi (inset) of the Nimbkar Agricultural Research Institute, accessed on May 29,

- 2025, http://nariphaltan.org/nari/pdf files/ethstovenews.pdf
- 20. US6688877B1 Lantern and fuel system and method Google Patents, accessed on May 29, 2025, https://patents.google.com/patent/US6688877
- 21. History of Biomass Gasification at NARI Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://www.nariphaltan.org/gasifierhistory.pdf
- 22. Nimbkar Agricultural Research Institute | 29 Authors | 24 Publications SciSpace, accessed on May 29, 2025, https://scispace.com/institutions/nimbkar-agricultural-research-institute-3i2ws34t
- 23. BIOMASS GASIFICATION Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://nariphaltan.org/gasbook.pdf
- 24. The Untold Story of Electric Rickshaws in India ResearchGate, accessed on May 29, 2025,

 https://www.researchgate.net/publication/391316550 The Untold Story of Electric Rickshaws in India
- 25. Untold Story of Electric Rickshaws in India Anil K Rajvanshi Podbean, accessed on May 29, 2025, https://anilrajvanshi50.podbean.com/e/untold-story-of-electric-rickshaws-in-india/
- 26. Tribrid Vehicle Quick Company, accessed on May 29, 2025, https://www.quickcompany.in/patents/tribrid-vehicle
- 27. An electrifying solution to urban pollution Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://www.nariphaltan.org/etarticle.pdf
- 28. Who Invented Battery Rickshaw: History Of E-Rickshaw JMT Vehicles, accessed on May 29, 2025, https://www.jmtvehicles.com/who-invented-battery-rickshaw-history-of-e-rickshaw/
- 29. dr. anil k. Rajvanshi (padma shri) IIT Bhubaneswar, accessed on May 29, 2025, https://www.iitbbs.ac.in/notice/event_1674675872.pdf
- 30. Anil K Rajvanshi | Free Podcasts Podomatic, accessed on May 29, 2025, https://www.podomatic.com/podcasts/anilrajvanshi
- 31. Dr. Anil Rajvanshi's Writings Nimbkar Agricultural Research Institute, accessed on May 29, 2025, https://nariphaltan.org/writings.htm
- 32. Dr. Anil K. Rajvanshi (BT/MT/ME/1972/1974) in conversation with the DORA office., accessed on May 29, 2025, https://www.youtube.com/watch?v=KCWhE1euJdo

HOME

Short biodata is here.