Distillation of Ethyl Alcohol from Fermented Sweet Sorghum Solution by Solar Energy

by

<u>Anil K. Rajvanshi</u>

Director, <u>Nimbkar Agricultural Research Institute (NARI)</u>, **PHALTAN-415523**, Maharashtra, India

E-mail: nariphaltan@gmail.com

(This report was submitted to DNCES, New Delhi in June 1984. Since then lot of work both on sweet sorghum (http://www.nariphaltan.org/ethanoldist.pdf); solar distillation http://www.nariphaltan.org/ethanoldist.pdf) and low concentration(50% w/w) ethanol stoves (www.nariphaltan.org/ethstove.pdf) has been done at our Institute. This report to our knowledge was the first attempt anywhere in developing technology for solar distillation of ethanol using sweet sorghum.

ABSTRACT

The proof of concept for solar distillation of ethanol from sweet sorghum juice has been established. Heat and mass transfer data for a laboratory single effect solar still has been generated. It is found that it will require 8 stills to distill 70% ethanol/water mixture starting from 7% ethanol in fermented solution.

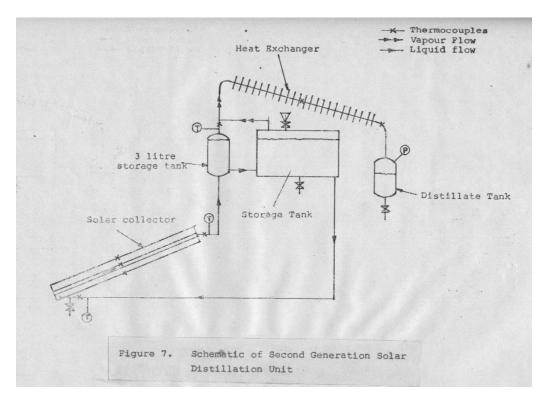
Various vacuum distillation units have been tested and analyzed. It is possible to distill 40-60% ethanol by solar energy using these units. An average day (5 kWhr/m²-day insolation) yields 1.4 kg/m²-day of 40% ethanol. The amount of ethanol distilled is inversely proportional to its percentage and directly proportional to the solar radiation. Consequently linear regression equations for these relationships have been established.

A simple method of predicting the percentage of ethanol distilled by knowing the solution temperature has also been developed. The efficiency of the distillation unit for distilling 40% ethanol is about 13% and compares extremely favorably as compared to 2-3% obtained from existing fossil fuel fired ethanol distillation plants.

The energy output/input analysis for production of ethanol for sweet sorghum has been done (Table 1 and 2). This ratio is 3.94 and thus shows that ethanol production from sweet sorghum has a highly positive energy balance. On an average one can produce about 2000 liters/ha of ethanol per year, from the present sorghum lines bred at the Institute.

Table 1. Energy input in growing and crushing sweet sorghum (Plot size 2800 m^2)

Sr.	Operation	Device	Number	Time	Energy unit	Total	Ref.
No.	A CDICIII TUDE		& system	(hrs.)		Energy MJ	
1.	AGRICULTURE Land preparation	Tractor	13 liters Diesel	3.15	37.7 MJ/lit.	490	22
	Tractor production energy					110	22
2.	Furrow opening	Muscle	1 man	7	1.05 MJ/hr	7.35	26
		Power	2 bullocks	7	2.66 MJ/hr	18.62	26
3.	Small row op.	Agricart	1 man + 2 bullocks	7 + 7	-do-	+ 7.35 18.62	26
4.	Sowing	Muscle	2 women	7	0.84 MJ/hr	11.76	26
5.	Weeding	Muscle	15 women	7	0.84 MJ/hr	88.2	22
6.	Irrigation	Ele. Motor 10 HP	1.2 million liters of water	10	27 MJ/hr	270	22
	Prod. of Elec. for motor running				11.4 MJ/kWh	850	22
	FERTILIZERS						
7.	Carbofuran		5 kg		454 MJ/kg	2270	27
	Urea		100 kg		35 MJ/kg	3500	27
	Superphosphate	18% P ₂ O ₅	130 kg		2.48 MJ/kg	323	27
	Muriate potash	60% K ₂ O	40 kg		4.8 MJ/kg	192	27
8.	<u>Pesticides</u>						
	Thiodan		125 ml		100 MJ/kg	12.5	27
	Metasystox		120 ml		100 MJ/kg	12.0	27
9.	Application of	Muscle	13 women	7	0.84 MJ/hr	76.44	26
	fertilizer +	Power	2 men	3.5	1.05 MJ/hr	7.35	26
	insecticide			_			
10.	Harvesting	Muscle	14 women	7	0.84 MJ/hr	82.32	26
	CRUSHING						
11.	Crushing	Elec. crusher	3 H.P.	34.6		278.7	22
12.	Elec. Prod.				11.4 MJ/kWh	882.5	22
13.	Labour for crushing	Muscle	1 man	12.2	105 MJ/hr	12.82	26
	TOTAL					9521.6 MJ	


Table 2. Energy output from sweet sorghum (RM line)

(Plot size 2800 m²)

Material	Quantity	Unit Energy	Total	% of	Ref.
			Energy	Total	
			MJ		
Grain	700 kg	14.5 MJ/kg	10150	27	27
Alcohol	290 lit.	22.3 MJ/liter ^{a, b, c}	6467	17.3	22
Bagasse	1494 kg	14 MJ/kg at 20% M.C.	20916	55.7	27
		TOTAL	37533	100	

- a) This is the maximum possible alcohol obtainable from RM lines with 10-14% fermentable sugars and 50% conversion rate for alcohol.
- b) Actual bagasse is 1868 kg. at 50% moisture content (M.C.).
- c) Besides being a high energy output quantity, sweet sorghum bagasse is an excellent fodder for animals. Thus the quality of energy is far superior to simply burning.

The use of 40-60% ethanol as an excellent cooking fuel has been established. A wickless stove has been designed, fabricated and tested to use this percentage and the efficiency of this stove has been found to be between 30-35%. Since 1984 we have developed extremely efficient stoves and lanterns to run on 50 %(w /w) ethanol/water mixtures.

